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How to use the notes. The principle that guided us during the creation of these notes was to
let the student not just memorize the algorithm, but to be able to understand why the algorithm
works. Consequently, it focuses much more on the theoretical part of the course, rather than on
problem-grinding. What this means is that these notes are not a subsitute for seminars and home
assignments�they're a completent to them. To facilitate the process of gaining insight into the concepts
your lecturers and seminar teachers want you to learn, explanations were attempted to be made as
clear as possible and a lot of e�ort was made to connect up ideas to each other. To make introduction
of new concepts easier, most of the explanations begin with examples in R1 or R2 and only then are
generalized.

Some chapters feature an appendix in which additional material can be found, such as even deeper
explanations or simply something fun and intersting, tangential but outside the scope of the course.

There are two ways to look at the �rst couple of months of matec:

1. As an extension of �rst year calculus topics but for several dimensions

2. Getting ready to solve optimization problems. This is totally unobvious, but all the set theory,
limits, derivatives of functions of several variables, etc. are needed to be able to fully understand
constrained optimization problems, similar to the typical micro utility maximization problems,
but more complex. Right now the picture below won't make any sense. But when you start
getting the material, you can try to look back at it and you will realize how it's all connected:
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1 Set Operations and Notation

De�nition. A set is a collection of distinct objects.
Which means that there are no repeats and order doesn't matter.

Example 1.

A = {1, 2, 3} = {3, 1, 2}

Example 2.

all x such that

x is bigger or equal

    than 0 and less

    or equal than 1

A has three members, while B has an in�nite number of members. Thus, sets can either be �nite
or in�nite.

1.1 Operations on sets

First, some notation:

a ∈ A element a belongs to a set A 1 ∈ {1, 2}

B ⊆ A a set B is a subset of a set A
{1, 2} ⊆ {1, 2, 3, 4},
{1, 2} ⊆ {1, 2}

∅ empty set A = {}

2A
power set: set of all subsets of

a set
e.g. A = {1, 2}

2A = {∅, {1}, {2}, {1, 2}}

Union of sets. A ∪B. Venn diagram:

A B

all x
such

that

x belongs

      to A

or x belongs

       to B

Intersection of sets. A ∩B. Venn diagram:

A B

A ∩B = {x | x ∈ A and x ∈ B}.
Verbally: elements that belong to both A and B.
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Di�erence of sets. A \B. Venn diagram:

A B

A \B = {x | x ∈ A and x /∈ B}.
Verbally: elements that belong to A and do not belong to B.

Complement or negation of a set. Ā or ¬A. Venn diagram:

A

¬A = {x | x /∈ A}.
Verbally: elements that do not belong to A.

Cartesian product of sets.

all points
    (a, b)

such
that

 a coordinate
comes from A

 b coordinate
comes from B

Example 1.

{1, 2, 3} × {3, 4} = {(1, 3), (1, 4), (2, 3), (2, 4), (3, 3), (3, 4)}

Example 2.

{3, 4} × {1, 2, 3} = {(3, 1), (3, 2), (3, 3), (4, 1), (4, 2), (4, 3)}.

1.2 Appendix

Fun fact: Russell's paradox Suppose a barber who shaves all men who do not shave themselves
and only men who do not shave themselves. Does the barber shave himself? If he does, then he
shouldn't. If he doesn't, then he should. Thus a paradox.

Stated more formally: Let R be the set of all sets that are not members of themselves (R = {x|x /∈
x}). If R is not a member of itself, then its de�nition dictates that it must contain itself (R ∈ R), and
if it contains itself, then it contradicts its own de�nition as the set of all sets that are not members of
themselves (R /∈ R).
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2 Sequences in Rn

2.1 Vectors

Vectors a in Rn is given by a =

 a1
...
an

, where an is a nth coordinate of a vector. For example, in

R2 vector a =

(
a1
a2

)
=

(
ax
ay

)
.

We add vectors together by adding each coordinate: a+ b =

 a1 + b1
...

bn + bn

.
2.1.1 Vectors in R2 (Euclidean space)

Length of a vector1 a is denoted by ||a|| and equals
√
a2x + a2y or in sum notation

√
2∑
i=1
a2i . You already

knew this in the form of Pythagoras' theorem:

y

x

(a
x
,a

y
)

||a||=    a
x
+a

ya

2 2

Distance between vectors a and b is denoted by ||a− b|| and is equal to
√

(ax − bx)2 + (ay − by)2 =√
2∑
i=1

(ai − bi)2. As we can see from the picture, it's Pythagoras again:

y

x

(a
x
,a

y
)

(b
x
,b

y
)

d=||a-b||=   (a
x
- b

x 
)2+(a

y
- b

y 
)2

a y- 
b

y

a
x
- b

x

a

b

1Technically, it's called a norm of a vector but you don't need to think about it.
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2.1.2 Vectors in Rn (Euclidean space)

The way we count lenghts and distances in Rn is exactly the same as in R2 but we use more coordinates.
Basically, Pythagoras' theorem, but for an arbitrary number of dimensions.

De�nition. Length of a vector a in Rn:

||a|| =

√√√√ n∑
i=1

a2i

De�nition. Distance between vectors a and b in Rn:

||a− b|| =

√√√√ n∑
i=1

(ai − bi)2

2.2 Balls

2.2.1 Balls in R1

Ball in R1 is called an interval. An interval near the point a, (a− ε, a+ ε)

xaa - ε a + ε

written in math notation as

{x | a− ε < x < a+ ε}

is given by

Bε (a) =
{
x ∈ R1 | ||a− x|| < ε

}
2.2.2 Balls in R2

Ball in R2 is called a disk. A disk around the point a with a radius ε:

ε
inside the circle ||a-(x,y)||<ε,
for all points (x,y).a

ε

a

ε

written in math notation as{
(x, y) |

√
(ax − x)2 + (ay − y)2 < ε

}
is given by

Bε (a) =
{
x ∈ R2 | ||a− x|| < ε

}
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2.2.3 Balls in Rn

For a ball in Rn we have exactly the same de�nition as for a disk in terms of ||a− x|| < ε:

De�nition. Ball Bε (a) around the point a with a radius ε in Rn is given by

Bε (a) = {x ∈ Rn | ||a− x|| < ε}

2.3 Sequences and Their Limits

2.3.1 A sequence of points in Rn

The Fibonacci sequence, given by 1, 1, 2, 3, 5, 8, 13, ... is an example of a sequence in R1, which is the
type of sequences you explored in the �rst year calculus. A sequence in Rn is an extension of this idea:

Fibonacci sequence
arbitrary sequence

in R1 arbitrary sequence in Rn

a1 = 1 a1 =
(
a11
)

a1 =

 a11
...
am1


a2 = 1 a2 =

(
a12
)

a2 =

 a12
...
am2


a3 = 2 a3 =

(
a13
)

a3 =

 a13
...
am3


an = an−2 + an−1 an =

(
a1n
)

an =

 a1n
...
amn



So, an =

 a1n
...
amn

 is a nth point of a sequence, ain is an ith coordinate of a point, and the sequence

itself is given by {an}∞n=1.

2.3.2 Limit of a sequence in R1

In R1 a sequence has the limit L, if for any arbitrary small number ε > 0, there's a point nε such that,
for all points following nε, the sequence lies within the distance between its limit L and ε. Written
formally,

limn→∞an = L i� ∀ε > 0 ∃nε : ∀n > nε, ||an − L|| < ε

Graphically:

x

n

L
ε

n
ε

a
1

a
2

a
3
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Note that here the horizontal axis does not carry any meaning by itself: it simply shows the order
of the sequence.

2.3.3 Limit of a sequence in R2

In R2 we need both coordinates to be close to L and the following theorem should be fairly obvious:

Theorem. A sequence {an}∞n=1 converges to L if and only if each coordinate of a sequence
{
ain
}∞
n=1

converges to the corresponding coordinate Li.
A natural way to de�ne this would be to pick an arbitrarily small area � an ε-ball � around L and

see whether all points after a certain nε lie within this ball. So we modify the de�nition of a limit by
making ε to be the radius of a ball. Notice that the de�nition written in math notation didn't change:

limn→∞an = L i� ∀ε > 0 ∃nε : ∀n > nε, ||an − L|| < ε

Next, let's see a couple of examples of converging sequences.
First is a spiral sequence (try to de�ne it explicitly :p). Imagine a ball around its center and start

shrinking it. For any arbitrarily small ball, we will �nd a point on the spiral, such that all points after
this point lie within the ball. Thus, spiral's center is its limit.

a
1

a
2

a
3

On the pictures below

left sequence (a) right sequence (b)
xn = 3− 2

n xn = 3− 2
n · (−1)n

yn = 1 + 3
n yn = 1 + 3

n

x

y

0 1 2 3 4 5

1

2

3

4

5

x

y

0 1 2 3 4 5

1

2

3

4

5
a
1

a
2 a

3

b
1

b
2 b

3lim=(3,1)

lim=(3,1)

(you can calculate several �rst values of these sequences to con�rm that they are convergent)
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2.3.4 Limit of a sequence in Rn

Limit of a sequence in Rn is very similar to that in R1 and R2 (except we can't really visualize it2),
and the de�nition carries over from R2 completely.

De�nition. The sequence {an}∞n=1 in Rn converges to L if

∀ε > 0 ∃nε : ∀n > nε, ||an − L|| < ε

2.3.5 Accumulation points of a sequence

Suppose we have a sequence in R1 given by an = (−1)n. Its behavior is pretty straightforward � the
sequence jumps back and forth from −1 to 1 ad in�nitum. We may be tempted to say it has two limits
but that would only be half-right: we could apply the de�nition of a limit either to all odd points,
or all even points � but not to both. Such points, where an in�nite number, but not necesarrily all
of them, lie within a ball Bε (a) are called accumulation points of a sequence. Note that the limit is
always an accumulation point. Also, if the sequence has one accumulation point, then this point is the
limit.

Although the concept of accumulation point of a sequence is rarely used, it will be helpful in
understanding the limit of a function.

2A mathematician and an engineer go to a physics talk where the speaker discusses 23-dimensional models for
spacetime. Afterwards the mathematician says "that talk was great!" and the engineer is shaking his head and is very
confused: "The guy was talking about 23-dimensional spaces. How do you picture that?" "Oh," says the mathematician,
"it's very easy. Just picture it in n dimensions and set n = 23.�
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3 Sets

3.1 Open and Closed Sets

3.1.1 Sets (intervals) in R1

Back in high school you learned about the types of intervals. Interval is called closed, if it includes
its endpoints. Interval is called open, if it doesn't include its endpoints. To understand the di�erence
between open and closed interval in a di�erent way, let's try to draw some R1 balls (intervals, that is)
on it:

[
a b

[

Note that a ball drawn around endpoints a or b does not lie inside [a, b] completely. For point b,
right-hand side of a ball will necessarily be outside the interval; for point a � left-hand side.

Now consider an open interval (a, b):

(
a b

(

In contrast to a closed interval, for any point in an open interval, we can �nd a ball which would
lie inside the interval completely. We call such a point internal:

De�nition. Internal point is a point such that we can draw an ε-Ball arount it, which would contain
only points from the set.

Then, an open interval consists only of internal points. In fact, this observation is true for all open
sets in Rn. Formally, though, the de�nition of an open set is:

De�nition. The set S is called open, if for its every point x, there exists an ε-Ball centered at x that
lies in S completely.

3.1.2 Sets in R2

Consider a circle x2 + y2 = 1 on a plane:

x

y
1

1
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The circle naturally divides the whole plane into 2 parts: inside of it and outside of it. However,
we also need to decide which part the circle itself belongs to: inside or outside. So there are four
arrangements in total:

x

y
1

1

x

y
1

1

x

y
1

1

x

y
1

1

x2 + y2 ≤ 1 x2 + y2 < 1 x2 + y2 ≥ 1 x2 + y2 > 1
closed open closed open

bounded bounded unbounded unbounded

Note that the di�erence between open and closed sets is whether they contain their boundary points.
Intuitively, boundary points lie on, duh, bounds, which implies that however small balls around these
points we draw, some parts of them will neccesarily be inside the interval and some parts will be outside
(check picture for closed interval above, if this is not obvious). Formally:

De�nition. Boundary point is a point such that every ε-Ball around it contains points from a set and
not from a set.

The way to remember the distinction between closed and open set is that closed contains all its
boundary points, while open doesn't contain any of its boundary points (check the picture above with
four circles to con�rm). If a set contains some but not all its boundary points, then it's neither open
nor closed.

Also note that two leftmost circles are bounded, while two rightmost are unbounded. Both visually
and intuitively it's obvious: set is bounded if it doesn't extend to in�nity in any direction (extending to
in�nity even along a single line in R2 is enough to become unbounded), so here's the formal de�nition:

De�nition. Set is called bounded if it is contained within some ball.
Note that a bounded set doesn't need to be round itself. It simply needs to be able to be drawn

into a ball, and as long as it doesn't include in�nity in any direction, it's bounded.

3.1.3 Sets in Rn

In Rn everything stays basically the same, except we need more axes.
Now, hopefully having acquired intuition, we move on to de�ne closedness of a set formally. To do

this let's get back to R1. Consider an open interval (0, 1) and this sequence on it:

a1 = 0.9
a2 = 0.99
a3 = 0.999

...

Each member of the sequence is in the interval. However lim an = 1 is outside the interval. Having
this sequence in mind, proceed to the de�nition of a closed set:

De�nition. Set is called closed, if it contains the limit of any convergent sequence of elements from
the set.

Note that [0, 1] containts lim an, as well as the limit of any other sequence, which consists of points
on the interval. Thus, we know that it's closed.

11



Example 1. Consider the interval (0,+∞). In R1 it is given by {x | x > 0} and it's open and
unbounded; in R2 it is given by {(x, y) | x > 0, y = 0} it's still unbounded but it's no longer open,
since line on a plane entirely consists of boundary points (if you try to imagine these sets, this will
become obvious).

Example 2. (example taken from 31.10.11 mock)
Let D be the domain of the function f(x, y) = ln(x) +

√
y − x. Find D, the set Do of internal

points of D, and the set ∂D of boundary points of D.

Solution. Domain is the function's all possible inputs, which means we have to ensure that ln(x)
and
√
y − x receive the correct inputs:

ln(x)⇒ x > 0√
y − x⇒ y ≥ x

So D is {(x, y) | x > 0 and y ≥ x}. Graphically:

y

x

From the picture we can see that internal points Do are {(x, y) | x > 0 and y > x}. Recalling the
de�nition of a boundary point, which says that it is a point such that every ε-Ball around it contains
points from a set and not from a set, we see that the vertical line x = 0 and the diagonal y = x satisfy
it. So boundary points ∂D are {(x, y) | x = 0 and y ≥ 0 or x ≥ 0 and y = x}. Also, we can see that
this set is neither open nor closed, as it contains some but not all of its boundary points.

Theorem. Complement of a closed set is an open set; complement of an open set is a closed set.

Example. Complement of a closed interval [0, 1] is open interval (−∞, 0) ∪ (1,+∞); complement of
and open interval (0, 1) is closed interval (−∞, 0] ∪ [1,+∞).

Fun fact. Empty set and its complement (entire line in R1; entire plane in R2; and so on) are the
only sets on Rn that are simultaneously open and closed.

3.2 Compact Sets

Now, recall the mental image of a set
{

(x, y) | x2 + y2 ≤ 1
}
and proceed to the following de�nition:

De�nition. Set is called compact if it is both closed and bounded.

If you want to understand the signi�cance of this de�nition, let me return to the �rst year calculus
for a moment (you can skip this otherwise). Consider the problem of �nding the maximum and the
minimum of a function on an interval. Immediately we start thinking about �rst and perhaps second
derivative. But wait, how do we know that min and max even exist? Consider this function, which is
discontinuous on the closed interval [a, b]:

12



x

y

a b

y(x)

min? max?

y(x)

Pretty obvious that it has neither min, nor max on [a, b]. Well, maybe requiring function to be
continuous would su�ce? Then consider this function, which is continous on an open interval (a, b):

x

y

a b

y(
x)

min max?

Minimum is attained somewhere between a and b. But since b is not included, it can't be the point
where f attaints its maximum. Where does it then? Somewhere really close to b, obviously. Let's call
this point c. Now move to c+ ε. We're still inside the interval as c+ ε < b but f(c+ ε) > f(c). So f(c)
is not the maximum. It's easy to see that there's in fact no such point, where f attains maximum.

So it turns out that the function has to be both continuous and be de�ned on a closed interval for
us to be con�dent that it attains both min and max.

x

y

a b

y(
x)

min max

This might remind you of the Extreme Value Theorem, and it actually is:
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Extreme Value Theorem (EVT). If f is continuous on the closed interval [a, b], then f attains
its minimum and maximum values on [a, b].

Note, however, that EVT de�nes su�cient conditions i.e. if EVT is satis�ed, then min and max
are attained for sure. However these conditions are not necessary for min and max to be attained.
Consider this function, which is not continuous and is de�ned on an open interval:

x

y

a b
y(
x)

min
max

y(x)

Both extreme values exist. So the point of EVT is simply to provide a shortcut to us. If it is
satis�ed, extremes exist. If not � they may or they may not.

Okay, back to matec. Large part of the Math for Economists course is dedicated to the extension
of the problem we examined above, except f becomes a function of several variables and constraints
are much more complex than a ≤ x ≤ b. Weierstrass Theorem that will be introduced further in the
text, provides a similar shortcut for these cases. The di�erence is that instead of the function needing
to be continuous and de�ned on a closed interval, it will have to be continous and be de�ned on a
compact set i.e. a set that is both closed and bounded.

3.3 Appendix 1

Unless you're very comfortable with de�nitions of open and closed sets, the following is

pretty hard to understand. If you don't get it from the �rst time, try to absorb as much

as possible initially and then reread this a couple of days later.

Earlier I wrote that an easy way to remember the distinction between open and closed sets it this:
1. Open set doesn't contain any of its boundary points.
2. Closed set contains all its boundary points.
How is this heuristic connected to the formal de�nition of open and closed sets? Let's start with

closed sets.
Recall from the de�nition that a closed set is a set that contains the limit of every convergent

sequence that consists of points from the set. To show the equivalence of these two de�nitions we have
to show that the set contains all its boundary points if and only if If, for every boundary point, we
could �nd a sequence that would converge to this boundary point, then, by de�nition, we would show
that a closed set contains all its boundary points.
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set Sset Sset Sset Sset Sset Sset Sset S

L=lim(a
n
)

a
1

a
2

a
3

a
4

Let's pick an arbitrary point L. Note that L is a boundary point, which means there are both
points belonging to S and points outside S arbitrarily close to L (in any ε-Ball around L). Next just
pick a sequence {an} from S, such that each next term would lie in an ε-Ball with smaller and smaller
radius around L, thus having L as its limit. Now L must belong to S by de�nition of a closed set.
Finally, repeat the process for all boundary points of S.

For open sets it's simpler: de�nition of an open set basically says that it only contains internal
points (since around each point you can draw a ball that would reside inside the set completely), which
is pretty much equivalent to saying that it doesn't contain any of its boundary points.

3.4 Appendix 2

Think about the following questions for a few moments, before reading the answers:

1. Consider a �nite union of closed sets. Is it open or closed?

2. Consider any (�nite or in�nite) intersection of closed sets. Is it open or closed?

3. Consider any (�nite or in�nite) union of open sets. Is it open or closed?

4. Consider a �nite intersection of open sets. Is it open or closed?

5. Is it true that any set consists of only boundary and interior points?

3.4.1 Answers.

Theorem (questions 1 and 2).

1. A �nite union of closed sets is a closed set.

Counterexample for in�nite union of closed sets that forms an open set:
∞
∪
n=1

[
1 + 1

n , 2−
1
n

]
= (1, 2).

2. Any (�nite or in�nite) intersection of closed sets is a closed set.

Theorem (questions 3 and 4).

1. Any (�nite or in�nite) union of open sets is an open set.

2. A �nite intersection of open sets is an open set.

Counterexample for in�nite intersection of open sets that forms a closed set:
∞
∩
n=1

(
1− 1

n , 2 + 1
n

)
= [1, 2].
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Question 5. Consider the set {[0, 1] ∪ {2}} on R1:

[
0 1

[
2

Is point (2) boundary or interior? If you check with the de�nitions, it's neither. Points like this
are called isolated. Thus, there are three kinds of points, which means that the boundary and internal
points are not necessarily complements.
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4 Multivariable Functions. Continuity.

Functions and sequences are basically the same things, except that sequences are discrete (they're
de�ned on the set of natural numbers and we can number each term of a sequence: 1, 2, 3, ...) , while
functions are de�ned on the set of real numbers, which are unenumerable. One could say that sequence
is a function on N.

4.1 Level curves

Drawing the functions of one variable is okay; drawing the functions of two variables is hard. Which is
why when we have a function of two variables, we frequently try to visualise it on a usual 2-axis graph.

Suppose we have a function which shows the height above the sea level of some piece of land
h = f(x, y). The most natural way to visualise it would be the following:

x

y h=100

h=200

h=300

h=400

The lines on the graph are the level curves of the function h = f(x, y). For example, for h = 100,
the level curve is given by

{(x, y) | f(x, y) = 100}

De�nition. C-level curve of the function h = f(x, y) for some level c is given by

{(x, y) | f(x, y) = c}

Note that the indi�erence curve from micro is a level curve in this course:

4.2 Limit of a Function

ÌÈÝÔ�ýòî òàêîå óíèêàëüíîå ìåñòî, ãäå òðè ðàçà ðàññêàçûâàþò

î òîì, ÷òî òàêîå ïðåäåë, è êàæäûé ðàç áåðóò çà ýòî øåñòüñîò òûñÿ÷.
Àëåêñåé Àõìåòøèí
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The limit of a function is pretty much the same thing as the limit of a sequence (check section 2.3.2
on page 7 for explanation). In fact, as mentioned earlier, we could view sequences a special kind of
functions for which the only values are f(1), f(2), f(3), and so on.

You'll probably never be asked to actually employ the de�nition of a limit, but you de�nitely need
to understand it conceptually to be able to prove either existence of a limit or absense of a limit of a
function at a point.

While calculating the limits of multivariable functions, we can employ the same operations as for
single-variable functions (lim of a sum, product, quotinent). The problem appears when we try to deal
with uncertanties (∞∞ and 0

0): L'Hospital's rule doesn't work for multivariable functions. This means
that when faced with uncertainty have to �nd other ways around it. This chapter shows the most
common techniques.

Example 1: multiplication by the conjugate

lim
x→0
y→0

xy

3−
√
xy + 9

=

Multiply the fraction by
(
3 +
√
xy + 9

)
and apply (a+ b)(a− b) = a2 − b2 to the denominator:

= lim
x→0
y→0

xy
(
3 +
√
xy + 9

)
9− (xy + 9)

= lim
x→0
y→0

xy
(
3 +
√
xy + 9

)
−xy

= lim
x→0
y→0

3 +
√
xy + 9

−1
= −6

Example 2: change of variables and equivalences

lim
x→0
y→−3

ln(1 + xy)

x
= lim

x→0
y→−3

ln(1 + xy)y

xy
=

Substitute z = xy → 0 and apply lim(f · g) = lim(f) · lim(g):

lim
z→0
y→−3

ln(1 + z)

z
· y =

Recall that for t→ 0, ln(1 + t) ∼ t:

lim
z→0
y→−3

(z
z
· y
)

= −3

4.3 Continuity

4.3.1 Continuity on R1

De�nition. f(x) is continuous around point x0, if lim
x→x−0

f(x) = f(x0) and lim
x→x+0

f(x) = f(x0).

Check the picture below to understand why we need these conditions:

xleft limit not ok

right limit ok

left limit ok

right limit not ok

left limit not ok

right limit not ok

left limit ok

right limit ok
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4.3.2 Continuity on R2 and Rn

While there's only two ways to approach a point on the line�from left or right�on a plane (and
in higher dimensions) there's an in�nite number of directions to do that (recall the examples from
section 2.3.3 on page 8), and limit's de�nition extends to accomodate this fact:

De�nition. f(x) is continuous around point x0, if lim
x→x0

f(x) = f(x0).

Now in order to prove existence of a limit we need to check all possible directions. To prove that
the limit doesn't exist, we just need to show that while approaching the point from two di�erent
paths, function approaches di�erent values (a parallel to sequences: we can prove that the limit of
a sequence doesn't exist by showing that it has two accumulation points). Most often we use the
following technique when we want to show that the limit doesn't exist:

1. Approach the point along the line y = kx

2. Approach the point along the parabolic curve y = kx2

3. And so on.

Usually, just checking y = kx is enough. Checking y = kx2 is almost always enough. But nothing
hypothetically stops Demeshev or Bukin from coming up with a function where you need to check
y = kx15 or something to prove that the limit doesn't exist.

Exam tip: the main di�culty when solving such a problem is to recognize that the limit doesn't
exist and not waste time trying to �nd it.

Example 1. Find the limit of the following function as x → +∞, y → +∞ (i.e. as we go to the
upper right-hand side corner from the origin) or prove that it doesn't exist:

f(x, y) =
x2 + y4

x4 + y2

Solution: Look at directions y = kx:

lim
x→∞

x2 + k4x4

x4 + k2x2
= lim

x→∞

x2(1 + k4x2)

x2(x2 + k2)
= lim

x→∞

1 + k4x2

x2 + k2

Dropping 1 and k2, as they're bounded and won't matter, we get:

lim
x→∞

k4x2

x2
= k4

Which means that the lim of f(x, y) depends on the line on which we approach ∞. For example,
moving along the line y = 1 · x, f(x, y) → 1; moving along the line y = 5 · x, f(x, y) → 625. Thus,
lim
x→∞

f(x, y) doesn't exist.

Example 2. Find the limit of the following function, as x → ∞, y → ∞ or prove that it doesn't
exist:

f(x, y) =
x2y

x4 + y2

Solution: Look at directions y = kx:

lim
x→∞

kx3

x4 + k2x2
= lim

x→∞

kx3

x2(x2 + k2)
= lim

x→∞

kx

x2 + k2
= lim

x→∞

kx

x2
= 0

Wait-wait-wait; what if we use parabolas y = kx2?
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lim
x→∞

kx4

x4 + k2x4
= lim

x→∞

kx4

x4(1 + k2)
=

k

1 + k2

So actually the limit does not exist! y = kx just couldn't provide us with the right curve.
Protip: by checking some, not all directions (such as y = kx in this example) we can only prove

that the limit does not exist (if we �nd di�erent limits along di�erent directions). Finding the �limit�
with only some directions doesn't tell us anything about the existence of the actual limit!

Example 3. Find the limit of the following function, as x → ∞, y → ∞ or prove that it doesn't
exist:

f(x, y) =
x15

y

4.4 Finding Limits with Polar Coordinates

Usually, we de�ne the point on a plane using the Cartesian system with x and y axes. An alternative
way to uniquely identify the point is by the distance from the origin and the angle:

x

y

A=(x
A
,y

A
)=(r

A
,θ

A
)

θ

r
y
A

x
A

To refresh our memory: sinθ = y
r , cosθ = x

r , tanθ = y
x .

So r =
√
x2A + y2A, while θ = arctan

(
yA
xA

)
.

The inverse conversion is x = r · cosθ, y = r · sinθ.

Protip: Polar coordinates are very useful when we deal with x2 + y2 in limits.

Example 1. This example simply shows explicitly how the change of the coordiates to polar works:

lim
x→3
y→4

f(x, y) = lim
r→5

θ→arctan( 4
3)

f(rcosθ, rsinθ) = lim
r→5

θ→arctan( 4
3)

g(r, θ)

The question that might pop up is why do we switch g, rather than continue working with f in
polar? Consider f(x, y) = x + y. Then f(r, θ) = r + θ. That's hardly what we wanted to achieve, so
we introduce g(r, θ) = rcosθ + rsinθ.

Example 2.

lim
x→0
y→0

f(x, y) = lim
r→0
θ→any

g(r, θ)

since when r = 0 we don't have any information about the angle.
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Example 3. (example taken from 25.10.12 mock)

lim
x→0
y→0

x3 + y3

x2 + y2
= lim

r→0
θ→any

r3cos3θ + r3sin3θ

r2cos2θ + r2sin2θ
=

Using cos2x+ sin2x = 1

= lim
r→0
θ→any

r(cos3θ + sin3θ) = 0

Since both cos and sin are restricted by −1 and 1, and are therefore bounded, cos3θ + sin3θ won't
actually matter.

Notice that we could see from the very beginning that the limit is equal to 0, as, close to the origin,
x3 and y3 are much smaller than x2 and y2.

The result about unimportance of bounded values, when dealing with in�nities is mostly obvious
but still there's a theorem for it:

Theorem. Limit of the product of an in�nitely big number and a bounded number is in�nity: +∞·
c =∞ and −∞ · c =∞ (here, by ∞, I mean either +∞ or −∞, depending on the sign of c). Limit of
the product of an in�nitely small number and a bounded number is zero: 0 · c = 0.

Example 4.

lim
x→0
y→0

x2y2

(x2 + y2)2
= lim

r→0
θ→any

r2cos2θsin2θ

r2
= cos2θsin2θ

Since both cos and sin change with a change in θ, and we can approach point (0, 0) at any angle θ,
there is no limit of this function.
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5 Di�erentiation of Multivariable Functions. Approximation

5.1 Taylor Series Introduction

Let's start with a �real-life� example: so imagine a car. We know that the car's position at a time t0
is s(t0) = s0. However, we don't know its speed. Neither do we know its acceleration. If we are asked
about the car's position at a time t1, what do we say? The only value we can use is s0, so there's no
choice but to say that s(t1) ≈ s0. Okay. Now, we suddenly learn about the car's speed at the moment
t0: v = v0. What do we say s1 is now? Since we don't know anything about the car's acceleration,
we'll just have to assume its speed is constant. Then, s(t1) ≈ s0 + v0(t1 − t0), i.e. the car's initial
position and what we assume it drove during the period between t0 and t1. Okay, better. But what if
we know car's acceleration at t0: a = a0 as well? Surely we want to use this information, but how do
we do it?

In your high school physics class you were just given a formula:

s1 = s0 + vt+
at2

2

Today you learn that this formula is a special case of Taylor series.
Back to math. Car's speed is the rate of change of its position, therefore it's the �rst derivative

s′(t) of s(t). Car's acceleration is the rate of change of its speed, therefore it's the second derivative
s′′(t) of s(t). What if car's acceleration varies as well? And its acceleration? And so on? Only using
s′′(t) would be a waste of all the derivatives that follow it.

Okay, here's the formula:

s(t1) ≈ s0 + s′(t0)(t1 − t0) +
s′′(t0)(t1 − t0)2

2
+
s′′′(t0)(t1 − t0)3

6
+ ...

In a more general form:

f(x) ≈ f(x0) + f (1)(x0)(x− x0) +
f (2)(x0)(x− x0)2

2!
+
f (3)(x0)(x− x0)3

3!
+ ...

And in the most general form possible:

f(x) ≈ f (0)(x0)(x− x0)0

0!
+
f (1)(x0)(x− x0)1

1!
+
f (2)(x0)(x− x0)2

2!
+ ...

where f(x) = f (0)(x), f ′(x) = f (1)(x) and so on. n! = 1 · 2 · 3 · ... · n =
n
Π
n=1

n and 0! = 1.

De�nition. Taylor series of a function is given by

f(x) ≈
∞∑
n=0

f (n)(x0)(x− x0)n

n!

The thing is, it's really hard to understand exactly how we get this formula (I don't really get
it myself; blame Akhmetshin :p). If you're interested, Wikipedia has a really great article on Taylor
series (link). But you probably want to memorize the formula and be able to use it when

asked. Taylor series turns up everywhere!
As a rule of thumb, the more derivatives we use, the better approximation is. However this is not

universal and even using the in�nite number of derivatives does not guarantee the convergence to the
true value. Fortunately, within the course the functions are all so nice, we can forget about this and
just use Taylor series blindly.

Some terminology: the case when we used car's speed � �rst derivative � was an instance of �rst-
order approximation. The case when we used its acceleration � second derivative � was an instance of
second-order approximation. These are the only two cases we're going to look in deeply during this
course.
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5.2 First-Order (Linear) Approximation for One Variable

Back to normal functions. Hopefully, the idea of using derivatives to approximate functions is pretty
intuitive now. If we have a function of one variable such that calculating its value at x0 is trivial, while
doing the same thing at x0 + ε is nearly impossible, use approximation, usually �rst-order:

x

y

x
0

y(x)

x
0
+ε

actual

value

approximation

Recall the graphical interpretation of the derivative: it is the slope of the function at a point (or
of its tangent line at a point). Equivalently it is shown by the change in f given dx = 1. The closer
to x0 we are, the less the slope changes and the more accurate the approximation is. For one variable,
generalized form of �rst-order approximation is:

f(x) ≈ f(x0) + f ′(x0)dx = f(x0) + f ′(x0)(x− x0)

5.3 First-Order (Linear) Approximation for Two Variables

We want to generalize the method of using the derivative to approximate a function to functions of
two variables:

z = f(x, y)

In order to do this, we'll decompose total change of function's value into change due to change in x :
dx and change due to change in y : dy.

First with dx. To isolate change of z due to dx we need to �x y, i.e. take y as if it were a constant.

z = f(x, y0)

Then take this function's derivative, which is the rate of change of the function f along the line
y = y0

z′x = f ′(x, y0)

at a speci�c point (x0, y0). This is called a partial derivative.

De�nition. If it exists3, partial derivative of z with respect to x is given by

f ′x(x0, y0) = f ′x =
∂z

∂x

Note that partial derivatives are denoted with ∂, rather than d. Change in z due to
change in x is

∂z

∂x
dx = f ′xdx

3This is almost always the case within this course, but we can actually come up with a simple looking function that
is not di�erentiable, e.g. y =

(
x2

)0.5
, which we usually write as y = |x|.
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Now, repeat the same operation for dy.

z = f(x0, y)

f ′y =
∂z

∂y

And change in z due to change in y is

∂z

∂y
dy = f ′ydy

Finallly, total change in z equals change due to dx and change due to dy. By combining these we
get z's �rst total di�erential.

De�nition. First total di�erential of a function of two variables is given by

dz =
∂z

∂x
dx+

∂z

∂x
dy = f ′xdx+ f ′ydy

And we can use this result to approximate z close to (x0, y0):

z = f(x, y) ≈ f(x0, y0) + f ′x · (x− x0) + f ′y · (y − y0)

5.4 Tangent Plane

If in R1 we �nd linear approximation of function's value by its tangent line, in R2 it is tangent plane.

De�nition. Tangent plane for a function of two variables is given by

z = f(x0, y0) + f ′x · (x− x0) + f ′y · (y − y0)

5.5 Directional Derivative

Directional derivative shows the rate of change of a function in a particular direction we picked. It
is a concept which can be thought of as a special case of the �rst total di�erential. Key di�erence
between them is that the total di�erential is a function of arbitrary dx and dy, while, for directional
derivative, length of a vector is always 1, in other words, dx and dy become dependent on each other,
since dx2 + dy2 = 1 (check section 2.1.1 on page 5 for explanation). We call such a vector normalized

or a unit vector.

De�nition. Directional derivative gives the rate of change of f(x, y) at a point (x0, y0) in the direction

of a unit vector
→
u (vector of length 1, where dx2 + dy2 = u21 + u22 = 1). Its formula is:

D→
u
f(x, y) = f ′x · u1 + f ′y · u2 =

(
f ′x f ′y

)( u1
u2

)
At a point is important because we calculate f ′x and f ′x at a speci�c point and plug in concrete

numbers. Alternatively, if length of a vector is not equal to 1 (such vector is usually denoted as
→
l ),

the directional derivative is

D→
l
f(x, y) =

f ′x · l1 + f ′y · l2√
l21 + l22

=
(
f ′x f ′y

)
·
→
l

||l||

This implies that whether we pick vector

(
5
3

)
or

(
15
9

)
directional derivative stays the same.

Only change in the ratio dy/dx will change it.
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5.6 Gradient

Suppose we want to go in the direction of the maximum growth of a function (assuming vector length
is 1 for simplicity). Which dx and dy should we pick? The problem is:

f ′x · dx+ f ′y · dy → max

Note that this is the dot product of vectors

(
f ′x
f ′y

)
and

(
dx
dy

)
. Since another formulation of the

dot product is ||→a || · ||
→
b || · cosα and cos is maximum (= 1) when α = 0, it is maximum when vectors

are codirected. Thus, to maximize function's growth rate we pick

(
dx
dy

)
such that it is codirected

with

(
f ′x
f ′y

)
. This, in turn, means that

(
f ′x
f ′y

)
itself points in the direction of maximum growth of

the function. This vector is called the gradient of a function.

De�nition. Gradient of a function f(x, y) is given by

→
∇f(x, y) =

(
f ′x
f ′y

)
Which is simply the vector of partial derivatives of a function. Also, now you can see that we can

reformulate directional derivative using the gradient at a speci�c point :

D→
l
f =

→
∇f ·

→
l

||
→
l ||

Protip: Remember �rmly these three key properties of a gradient, as they're very frequently helpful
in the exams. If you are too lazy to memorize all of them, pick property 3.

1. Gradient points in the direction of the most rapid growth of the function (discussed above).

2. Length of the gradient is equal to the maximum rate of growth of the function. Proof:

D→
l
f =

→
∇f ·

→
l

||
→
l ||

=
||
→
∇f || · ||

→
l || · cosα

||
→
l ||

= ||
→
∇f || · cosα = ||

→
∇f ||

cosα = 1 from the derivation of a gradient above.

3. Gradient is orthogonal to the level curve.

Example. (taken from ??.11.2008 mock)
Calculate the directional derivative of the function f(x, y) = 2x3 + 2y2 at the point A (1, 2) in the

following directions:

a) ~l = (1, 3)

b) ~l which is orthogonal to the curve given by the equation x2 + y2 = 5

c) Direction of the fastest growth of f(x, y)
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Solution. In order to learn anything at all about the function, we'll need to know its partial deriva-
tives, so:

f ′x = 6x2 = 6
f ′y = 4y = 8

a) D = 6·1+8·3√
12+32

= 30√
10

b) �Orthogonal� is a synonym to �normal� for xy-plane, and from Je�rey we remember that the
equation of the normal line is y = f(x0) + =1

f ′(x0)(x=x0)
and its slope is −1

f ′(x0)
. By using the Implicit

Function Theorem (discussed in the next chapter), i.e. the fact that y′ = −F ′x
F ′y
, we can �nd f ′:

y′ = −F
′
x

F ′y
= −2x

2y
= −1

2

Orthogonal to which is 1
− 1

2

= 2. Now just pick any vector with dy twice of dx, e.g.

(
1
2

)
and

calculate directional derivative in its direction: D = 6·1+8·2√
12+22

= 22√
5

c) Direction of the fastest growth is the direction of the gradient i.e.

(
6
8

)
: D = 6·6+8·8√

62+82
= 10

5.7 Chain Rule

Suppose we have a one-dimensional mountain, height of which at every point x is given by f(x), and
a hiker walking on it, whose coordinate at a time t is given by x(t):

x

y

f(x)

x(t)

Then, if we want to learn the height of the hiker at some time t, the function we work with
is f(x(t)). This was sort of a justi�cation for the existence of the chain rule but this is where
the real world example ends. If you'd like to learn more, Math Insight has a great page about it:
http://mathinsight.org/chain_rule_multivariable_introduction.

5.7.1 f(x(t))

Suppose we have a function f(x(t)) and we want to �nd its �rst total di�erential df . Change in f is
equal to derivative of f multiplied by the change in the argument:

df =
df

dx
dx

But since x depends on t, we can't just leave dx be, and dx becomes

dx =
dx

dt
dt

Then

df =
df

dx

(
dx

dt
dt

)
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Transfering dt to the other side, we �nd the derivative df
dt :

df

dt
=
df

dx

dx

dt

Alternatively:

f ′t = f ′x · x′t
We can draw a diagram4 to help us understand this process. It seems complicated and unnecessary

right now, but it will help a lot with more complex functions:

f

x

t

Next, just multiply both terms by �owing downwards, to get the exact same result, as written
above.

5.7.2 f (x(t), y(t))

Recall that once we start to deal with functions of several variables, e.g. f (x, y), df needs to be
decomposed into change due to dx and change due to dy. Note that we use ∂'s here, because ∂f

dx and
∂f
dy are partial derivatives:

df =
∂f

dx
dx+

∂f

dy
dy

But when x and y are dependent variables, e.g. f (x(t), y(t)), we need to count that in, and df
becomes:

df =
∂f

dx

(
dx

dt
dt

)
+
∂f

dx

(
dy

dt
dt

)
Transferring dt to the other side we get:

df

dt
=
∂f

dx

dx

dt
+
∂f

dy

dy

dt

Alternatively:

f ′t = f ′x · x′t + f ′y · y′t
However, we could get exactly the same result by drawing a diagram:

4Idea by Paul Dawkins: http://tutorial.math.lamar.edu/Classes/CalcIII/ChainRule.aspx
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f

x

t

y

t

Now, we add up both branches to each other and get precisely:

f ′x · x′t + f ′y · y′t

5.7.3 f (x(a, b), y(a, b))

Let's �nd a partial derivative f ′a of the function f (x(a, b), y(a, b)), using a diagram. Here, we're only
interested in the branches that end with a (I greyed out branches we don't need):

f

x

a

y

b a b

After multiplying each element of black branches and then adding up branches to each other, the
result is:

f ′a = f ′x · x′a + f ′y · y′a
By analogy we can get f ′b. Also, by analogy we can work with more complex functions with the

help of diagrams.

Example. (taken from 29.12.2011 mock)
The function f(x, y) is given by f(x, y) = u2(x, y) + v3(x, y). The value of u and v and their

respective gradients at the point (x, y) = (1, 1) are also known, u(1, 1) = 3, v(1, 1) = −2, ∇u(1, 1) =
(1, 4), ∇v(1, 1) = (−1, 1). Find ∇f(1, 1) if u, v ∈ C1.

Solution.

∇f = (∇u) 2 + (∇v)3 =
(

12 + (−1)2 , 43 + 13
)

= (2, 65)

If you found yourself nodding along and the equation above did not raise any red �ags, you should
stop immediately and try to understand why the thing I just did is completely wrong. Correct solution
is after the following appendix.
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5.8 Appendix to Chain Rule

If Bukin or Demeshev feel particularly sadistic when composing the exam, they might come up with
something like this:

Example. (taken from 21.01.2009 mock)
Calculate all partial derivatives of the �rst and second order of u with respect to x and y if

u = f(a, b) and a = x+ xy, b = x/y.
The �rst thing to do here is to rewrite u = f(a, b) as u = f (a(x, y), b(x, y)) to better understand

the task and not bother with calculations for now. Let's focus on u′x:

u′x = f ′a · a′x + f ′b · b′x
Now, we move on to the second-order derivatives:

u′′xx =
(
f ′′aa · a′x + f ′′ab · b′x

)
a′x + f ′a · a′′xx +

(
f ′′ba · a′x + f ′′bb · b′x

)
b′x + f ′b · b′′xx

Simple! Right now your face probably looks a lot like this:

What the hell happened to f ′a and f
′
b? The �rst thing to realize is that f ′a is actually f

′
a (a (x, y) , b (x, y))and

f ′b is actually f
′
y (a (x, y) , b (x, y)) and we can di�erentiate them further just as if they were ordinary

functions. So let's slow down a little and get back drawing :

a

x

b

y x y

Notice that this diagram gives f ′′aa · a′x + f ′′ab · b′x, which is exactly what you can see in u′′xx above.
a′x+f ′a ·a′′xx part is the result of applying (f · g)′ = f ′ ·g+f ·g′. Second half of u′′xx is derived in exactly
the same fashion. Same for u′′xy, u

′′
yx, and u

′′
yy. It takes some e�ort to understand the process,

but once you draw a few diagrams, it becomes rather straightforward. But back to u′′xx:

u′′xx =
(
f ′′aa · a′x + f ′′ab · b′x

)
a′x + f ′a · a′′xx +

(
f ′′ba · a′x + f ′′bb · b′x

)
b′x + f ′b · b′′xx

We could try to simplify this, but really it's simpler to just plug in the numbers. We don't know
f so all f ′ and f ′′ just stay as they are. a′x = 1 + y; a′xx = 0; b′x = 1

y ; b
′′
xx = 0. Then:

u′′xx =

(
f ′′aa · (1 + y) + f ′′ab ·

1

y

)
(1 + y) + f ′a · 0 +

(
f ′′ba · (1 + y) + f ′′bb ·

1

y

)
1

y
+ f ′b · 0 =

= f ′′aa (1 + y)2 +
(
f ′′ab + f ′′ba

) 1 + y

y
+ f ′′bb

1

y2

I very strongly encourage you to try to calculate at least u′′xy by yourself and compare the results:
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u′′xy =
(
f ′′aa · a′y + f ′′ab · b′y

)
a′x + f ′a · a′′xy +

(
f ′′ba · a′y + f ′′bb · b′y

)
b′x + f ′b · b′′xy =

= f ′′aa · x (1 + y) + f ′′ab
(1 + y)x

−y2
+ f ′a + f ′′ba

x

y
+ f ′′bb

x

−y3
+ f ′b

1

−y2

Correct solution to the example in the previous section. To recap: f(x, y) = u2(x, y) +
v3(x, y), u(1, 1) = 3, v(1, 1) = −2, ∇u(1, 1) = (1, 4), ∇v(1, 1) = (−1, 1). It's not a coincidence that
this example is given in the chain rule section:

∇f = ∇
(
u2
)

+∇
(
v3
)

= 2u · ∇u+ 3v2 · ∇v

5.9 Second-order approximation

Young's Theorem. If the function is ∈ C2 (twice continuously di�erentiable), then f ′′xy = f ′′yx
5.

Protip: Although you could always just rewrite f ′′yx as f ′′xy, it's a good idea to calculate them both
independently to con�rm that they are the same and that you did everything correctly.

If a function of two variables f(x, y) is twice continuously di�erentiable (f ∈ C2), its second-order
total di�erential is:

d2f = d(df) = d(f ′xdx+ f ′yydy) = d(f ′x)dx+ d(f ′y)dy = (f ′′xxdx+ f ′′xydy)dx+ (f ′′yxdx+ f ′′yydy)dy =

= f ′′xxdx
2 + 2f ′′xydxdy + f ′′yydy

2

Subsequently, the second-order approximation of a function of two variables f(x, y) is its Taylor
polynomial up to second-order derivative:

f(x, y) ≈ f(x0, y0) + f ′x(x0, y0)(x− x0) + f ′y(x0, y0)(y − y0)+

+
1

2
(f ′′xx(x− x0)2 + 2f ′′xy(x− x0)(y − y0) + f ′′yy(y − y0)2)

Example. Use second-order approximation to approximate the function f(x, y) = x3y5+x2−y3+xy
at a point (1, 1)

Solution.

df = (3x2y5 + 2x+ y)dx+ (5y4x3 − 3y2 + x)dy

d2f = (6xy5 + 2)dx2 + 2(15x2y4 + 1)dxdy + (20y3x3 − 6y)dy2

f(x, y) ≈ f(1, 1) + f ′x(1, 1)(x− 1) + f ′y(1, 1, )(y − 1)+

+
1

2
(f ′′xx(x− 1)2 + 2f ′′xy(x− 1)(y − 1) + f ′′yy(y − 1)2) =

= 2 + 6(x− 1) + 3(y − 1) +
1

2
(8(x− 1)2 + 2 · 16(x− 1)(y − 1) + 14(y − 1)2)

Note that since we only use �rst two di�erentials, the approximation is only accurate around the
point (1, 1).

5You could try to picture a surface in xyz-space in your head, then imagine how we �rst take f ′x and then f ′′xy or
f ′y and then f ′′yx on it, and, with a considerable e�ort, might see, why this theorem true. There's no short and clear
explanation.
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6 Implicit functions

Suppose we want to �nd the derivative dy
dx of an implicit function xy = 1. Well, simple enough, just

write it explicitly as y = 1
x , and di�erentiate it:

dy

dx
= y′ =

(
1

x

)′
= − 1

x2

But now suppose the function is x + siny + xy = 0. Whatever we try to do, there's no way to place
all ys on the one side and all xs on the other side. We are forced to di�erentiate the implicit function.
The way we do it is using Implicit Function Theorem.

6.1 Implicit Function Theorem 1

Let's continue with x + siny + xy = 0. The important thing to realize here is that, although we
can't disentangle x from y, the function itself still exists, and there's nothing fundamentally di�erent
between an implicit function F (x, y) = 0 and an explicit function y = f(x). One of the implications is
that we can still view y as a function of x:

F (x, y) = x+ siny + xy = 0⇒ F (x, y (x)) = x+ siny (x) + xy (x) = 0

This also means it's possible to �nd the derivative of the implicit function dy
dx at a point, just as if it

were explicit. Since F (x, y (x)) = 0, F ′(x, y(x)) = 0.
Now, remembering the chain rule, we di�erentiate with respect to x:

∂F

∂x
+
∂F

dy
· dy
dx

= 0

then

∂F

dy
· dy
dx

= −∂F
∂x

and �nally

dy

dx
= −

∂F
∂x
∂F
∂y

which is usually written as

y′ = −F
′
x

F ′y

The result of this derivation should have been familiar to you from the previous year Calculus as
an Implicit Function Theorem (IFT). Since in this course we'll study more than one IFT, we are going
to call it IFT1.

IFT1. If we have equation F (x, y) = 0 and such point (x0, y0) that:

1. point (x0, y0) satis�es equation F (x0, y0) = 0

2. the function F is continuosly di�erentiable6 (F ∈ C1)

3. F ′y(x0, y0) 6= 0

6Actually, we only need it to be di�erentiable around the point, but you don't need to think about it.
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Then explicit function y = f(x) is de�ned near the point (x0, y0) and its derivative y′is equal to

y′ = −F
′
x

F ′y

Condition 1 is needed because we need to make sure the point we're trying to �nd the derivative
at actually belongs to the graph of the function.

Condition 2 is needed because, well, unless the function is di�erentiable at a point, we can't really
take its derivative (Exam tip: usually implicit functions given are polynomials, which are always
continuously di�erentiable; you can simply state this fact to show that the condition holds).

Condition 3 is needed since we divide by F ′y when calculating the derivative, and the function would
not be de�ned if F ′y was 0 (like with x2 + y2 = 1 at (1, 0) and (−1, 0), as F ′y = 2y = 0 at these points).

Example. (taken from 25.03.2015 mock)
Consider the equation y3 + xy + 3x2 + 2x3 = 7.

(a) Does this equation de�ne the implicit function y(x) at a point (x = 1, y = 1)?

(b) If the function y(x) is de�ned, �nd its second-order Taylor expansion.

Solution.

(a) Let's check the three conditions:

1. y3 + xy + 3x2 + 2x3 at (1, 1) is 1 + 1 + 3 + 2 = 7 � correct.

2. Polynomial, thus C1.

3. F ′y = 3y2 + x = 3 + 1 = 4 6= 0 � satis�ed.

Thus, we can conclude that this equation does indeed de�ne the implicit function y(x) at a point
(x = 1, y = 1).

(b) Second-order Taylor expansion of any function is given by:

y(x0) + y′(x0)(x− x0) +
y′′(x0)(x− x0)2

2

Check Taylor Series Introduction if you forgot this formula. And for our case it would look the
following way:

y(1) + y′(1)(x− 1) +
y′′(1)(x− 1)2

2

Then we can �nd y′(1) by using the formula y′ = −F ′x
F ′y
:

y′ = −y + 6x+ 6x2

3y2 + x
==

1 + 6 + 6

3 + 1
= −13

4

Now, remember that y is a function of x: y(x), so both F ′x = y + 6x + 6x2 and F ′y = 3y2 + x are
functions of x, not of y, and when we write y we actually mean y(x), so di�erentiate accordingly:

y′′ =

(
−F

′
x

F ′y

)′
= −

F ′′xF
′
y − F ′xF ′′y(
F ′y
)2 = −

(y′ + 6 + 12x)
(
3y2 + x

)
− (6y · y′ + 1)

(
y + 6x+ 6x2

)
(3y2 + x)2
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y′′ =

(
−F

′
x

F ′y

)′
= −

F ′′xF
′
y − F ′xF ′′y(
F ′y
)2 =

= −
(y′ + 6 + 12x)

(
3y2 + x

)
− (6y · y′ + 1)

(
y + 6x+ 6x2

)
(3y2 + x)2

=

= −
(−13

4 + 6 + 12
)

(3 + 1)−
(
6 · −134

)
(1 + 6 + 6)

(3 + 1)2
=

4115

16

Finally, the answer is

y ≈ 1− 13

4
(x− 1) +

4115
16 (x− 1)2

2

6.2 Implicit Function Theorem 2

A slight generalization of IFT1 is the case when we have one dependent variable y and several inde-
pendent variables x1, . . . , xn, so the equation becomes

F (x1, . . . , xn, y) = F (x1, . . . , xn, y(x1, . . . , xn)) = 0

Fortunately, we're actually only interested in the partial derivative dy
dxi

of this function, which means
that all the derivatives not involving xi are 0 (as c′ = 0). So our new expression is

F ′xi + F ′y · y′xi = 0

IFT2. If we have equation F (x1, . . . , xn, y) = 0 and such point
(
x10, . . . , x

n
0,y0
)
that:

1. point
(
x10, . . . , x

n
0,y0
)
satis�es equation F (x01, . . . , x

0
n, y) = 0

2. the function is continuosly di�erentiable (F ∈ C1)

3. F ′y
(
x10, . . . , x

n
0,y0
)
6= 0

Then explicit function y = f(x1, . . . , xn) is de�ned near the point
(
x10, . . . , x

n
0,y0
)
and its partial deriva-

tives y′xiare equal to

y′xi = −
F ′xi
F ′y

, for any i = 1, . . . , n

6.3 Implicit Function Theorem 3

The �nal generalization happens when there are n independent variables andm simultaneous equations.
We will actually only work with the case of one independent variable and two functions, as, going
beyond, everything gets too complicated. In equations below x is an independent variable, while y(x)
and z(x) are dependent, i.e. they're functions of x:{

F (x, y, z) = 0

G(x, y, z) = 0

Di�erentiating each function with respect to x by using chain rule (check IFT1 if you forgot) to
each function: {

F ′x + F ′y · y′x + F ′z · z′x = 0

G′x +G′y · y′x +G′z · z′x = 0

Alternatively:
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{
F ′y · y′x + F ′z · z′x = −F ′x
G′y · y′x +G′z · z′x = −G′x

Thus, we have a system of two equation with two unknowns: y′x and z′x, which we can solve by
Cramer's rule.

IFT 3. If we have equations

{
F (x, y, z) = 0

G(x, y, z) = 0
and such point (x0, y0, z0) that:

1. point (x0, y0, z0) satis�es equations

{
F (x, y, z) = 0

G(x, y, z) = 0

2. the functions are continuosly di�erentiable (F, G ∈ C1)

3. Jacobian (matrix of partial derivatives) given by

J =

(
F ′y F ′z
G′y G′z

)
4. is such that|J | 6= 0 at a point (x0, y0, z0)

then, by application of Cramer's rule7 the derivatives we're interested in are given by

y′x = −

∣∣∣∣F ′x F ′z
G′x G′z

∣∣∣∣
|J |

= −

∣∣∣∣F ′x F ′z
G′x G′z

∣∣∣∣∣∣∣∣F ′y F ′z
G′y G′z

∣∣∣∣
z′x = −

∣∣∣∣F ′y F ′x
G′y G′x

∣∣∣∣
|J |

= −

∣∣∣∣F ′y F ′x
G′y G′x

∣∣∣∣∣∣∣∣F ′y F ′z
G′y G′z

∣∣∣∣
To remind you, determinant of a 2× 2 matix∣∣∣∣a b

c d

∣∣∣∣ = ad− bc

Exam tip: You will absolutely certainly be asked to employ IFT1, or IFT2, or IFT3, or any
combination of these on the exam, so even if the explanations of these are unclear, just memorize the
results of each: y′ for IFT1; y′xi for IFT2; and y

′
x, z

′
x for IFT3; and make sure you can plug in the

right numbers in formulas when asked.

7You could just memorize the formulas below, but Wikipedia actually has a wonderful (still rather di�-
cult to understand, though) geometric explanation of this formula. Do check it out, if you're interested:
https://en.wikipedia.org/wiki/Cramer%27s_rule#Geometric_interpretation
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7 Convexity and Concavity. Convex Sets

Remark. In contrast to the course, the topics �Convexity and Concavity� and �Unconstrained Opti-
mization� are presented in a di�erent order here, because it feels more natural to me this way.

First derivative shows the slope of the function: f ′(x) > 0 ⇒ slope positive ⇒ function increases;
f ′(x) < 0 ⇒ slope negative ⇒ function decreases. Recall an example from Taylor Series Introduction
chapter. Slope of a function is analogous to its speed: speed is positive ⇒ function increases; speed is
negative ⇒ function decreases.

Second derivative then is the �acceleration� of a function: function is speeding up ⇒ f ′′ > 0;
function is slowing down ⇒ f ′′ < 0.

We call functions that are speeding up convex and functions that are slowing down concave8.

strictly

convex

strictly

concave
convex neither

Protip: an easy way to remember which one is convex and which is concave is to note that y = −x2
looks a lot like a cave. Coincidentally, it is also concave.

Okay, this was the basic intuition, but it is waaaaay too imprecise, even for me. Actually, if the
function is always speeding up, i.e. f ′′ > 0, then it's called strictly convex. Simply convex means that
it does not slow down, i.e. f ′′ ≥ 0. Same for concave. So lines like y = 2x are both convex and concave.

Furthermore, you could say that concave function like y = −x2 is �rst slowing down and then
speeding up, pointing to the absolute value of its �rst derivative. Well, technically, by �speeding up� I
mean �speeding up upwards or slowing down downwards�. Same for �slowing down�.

The technical formulation for convex function is the following:

De�nition. A function is convex on (a, b) if the inequality

f (αx+ (1− α) y) ≤ αf(x) + (1− α) f (y)

is satis�ed for any two points x and y from (a, b) and any α in [0, 1].

Protip: Although you are rarely asked for this de�nition, sometimes, remembering it and under-
standing its geometrical meaning (it is explained wonderfully in Je�rey on page 49) is extremely helful
in the exams (see Example at the end of this chapter).

7.0.1 Convex sets

It's rather obvious that f(x) = x2 is convex. However, what if we de�ne the domain (all inputs) to be
(1, 4) ∪ (8, 14), rather than (−∞,+∞). Is f(x) still convex on its domain?

The �rst thing to notice here is that the de�nition above only describes the sitiation of (a, b) �
a single interval, while here we have two intervals. But let's ignore this for a moment and proceed
anyway. Then, by taking two points in the domain, say x = 2 and y = 10, and taking their middle i.e.
α = 0.5, we get f (0.5 · 2 + 0.5 · 10) = f(6), which is not de�ned!

What we found is that the initial question does not make any sense � the function can't be either
convex or concave on a set like this. In R1 the set (domain) needs to be �connected�. In Rn the

8Sometimes convex is called concave up and concave is called concave down.
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situation is more complicated: here, the set (domain) needs to be convex, i.e. all of its points have to
be connected by a straight line segment, for us to be able to determine convexity of a function. Some
examples:

convex non-convex non-convex

De�nition. A set is called convex if given any two points a, b in that set, the straight line segment
ab joining them lies entirely within that set.

Formally, a set V is called convex if

∀a, b ∈ V point αa+ (1− α)b ∈ V, 0 ≤ α ≤ 1

Notice, that for a concave function, e.g. y = ln(x), the area below it � caled subgraph � looks like a
convex set; and for a convex function, e.g. y = x2 the area above it � called epigraph � looks like a
convex set. Thus, a theorem:

Theorem. If f is concave, then its subgraph is a convex set. If f is convex, then its epigraph is a
convex set.

Example 1. Determine whether the following set is convex:
{

(x, y) | y = x2
}

Answer: If you skipped the relevant seminar, you've probably thought �of course it is, since y = x2

is convex!�. But if you reread the problem, it does not actually say anything about the epigraph of
y = x2. The points in this example all lie on the parabola itself. Since when we connect any two of
these points, we get o� the parabola, the set in question is not convex.

This was an intuitive explanation, but to prove it formally we'll need to make use of the de�nition
of a convex set written just above. Let a = (−2, f(−2)) = (−2, 4), b = (1, f(1)) = (1, 1). We can pick
any α ∈ (0, 1) but let's take α = 0.6 here, as an example. Then αa+(1−α)b = 0.6(−2, 4)+0.4(1, 1) =
(−0.8, 2.8). Since f(−0.8) = 0.64 6= 2.8 this point does not lie in the set. Thus we get a contradiction
with the de�nition and a proof that the set is not convex.

Example 2. Determine whether the following set is convex:
{

(x, y) | y ≥ x2
}

Answer: This set is convex, since it describes the area above the parabola y = x2, and the theorem
is applicable.

7.1 R2

But what do we do with a function of two variables? Rather than simply checking f ′′, we now have
four partial derivatives: f ′′xx, f

′′
xy, f

′′
yxf
′′
yy. Let's start with a simple example:

f(x, y) = x2 + y2
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It's visually obvious that this function is convex, so let's see what happens to second-order partial
derivatives in this case:

f ′x = 2x
f ′y = 2y

⇒

f ′′xx = 2
f ′′xy = 0

f ′′yx = 0

f ′′yy = 2

Note that cross derivatives (fxy and fyx) are 0 and we can forget about them for now. Seeing that
f ′′xx > 0 at the entire domain of the function, we may say that f is always speeding up along the
x-axis; And since the same could be said about y-axis, we may conclude that the function is convex
as a whole.

Usually we arrange partial derivatives in the form of the Hessian matrix :

H =

(
f ′′xx f ′′xy
f ′′yx f ′′yy

)
=

(
2 0
0 2

)
De�nition. Hessian matrix is given by

H =

(
f ′′xx f ′′xy
f ′′yx f ′′yy

)
Switching signs of the function we get

f(x, y) = −x2 − y2

H =

(
f ′′xx f ′′xy
f ′′yx f ′′yy

)
=

(
−2 0
0 −2

)
Which is obviously concave. Finally, for function

f(x, y) = x2 − y2

H =

(
f ′′xx f ′′xy
f ′′yx f ′′yy

)
=

(
2 0
0 −2

)
As f ′′xx > 0, the function is speeding up along its x-axis; f ′′yy < 0, so function is slowing along the

y-axis, which means that it's neither concave nor convex.
Using these three functions for intuition, we can proceed to a more formal treatment. If we de�ne

H1 = |f ′′xx| and H2 = |H| =
∣∣∣∣f ′′xx f ′′xy
f ′′yx f ′′yy

∣∣∣∣, we can create the following table:

37



f(x) H H1 H2 convexity/concavity de�niteness

x2 + y2
(

2 0
0 2

)
> 0 > 0 strictly convex positive de�nite

−x2 − y2
(
−2 0
0 −2

)
< 0 > 0 strictly concave negative de�nite

x2 − y2
(

2 0
0 −2

)
something else neither neither

�Positive de�nite� and �negative de�nite� is what matrices, which satisfy the given conditions are
called. You should remember them because sometimes these terms are used in the exams.

H1 and H2 in the table above are called leading principal minors of a matrix. Formally:

De�nition. Let A be an n×n matrix. The kth order leading principal minor of A is the determinant
of a matrix obtained by deleting the last n− k rows and columns of A.

So 1st order leading principal minor of A : H1, is obtained by deleting all but the �rst row and
column. H2 is obtained by deleting all but �rst two rows and columns. And so on. Consequently,|Hn|
is the determinant of a n× n matrix.

A general rule for �nding whether a function f is strictly convex or strictly concave is:

1. f is strictly convex if and only if all its leading principal minors are strictly positive (> 0).

2. f is strictly concave if and only if all its leading principal minors alternate signs as follows:

H1 < 0, H2 > 0, H3 < 0, and so on

But what if the general pattern above holds, but some leading principal minor Hm is 0? This is
where intuition about speeding up and slowing down along axes ends, and where we'll need to do a
lot more calculations. In this case we'll unfortunately need to check all principal minors to determine
whether the function is convex or concave:

De�nition. Let A by an n×n matrix. A principal minor of A is the determinant of a matrix obtained
by deleting n− k rows of A, and the same n− k columns of A.

So, for a 2× 2 matrix there are two 1st order principal minors: D11 = |f ′′xx| and D12 =
∣∣f ′′yy∣∣, and

one 2nd order principal minor: D2 =

∣∣∣∣f ′′xx f ′′xy
f ′′yx f ′′yy

∣∣∣∣.
For a 3 × 3 matrix there are three 1st order principal minors: D11 = |f ′′xx| (remove 2nd and 3rd

rows and columns), D12 =
∣∣f ′′yy∣∣, (remove 1st and 3rd rows and columns) and D13 = |f ′′zz| (remove 2nd

and 3rd rows and columns); three 2nd order principal minors: D21 =

∣∣∣∣f ′′xx f ′′xy
f ′′yx f ′′yy

∣∣∣∣ (remove 3rd row and

column), D22 =

∣∣∣∣f ′′xx f ′′xz
f ′′zx f ′′zz

∣∣∣∣ (remove 2nd row and column), and D23 =

∣∣∣∣f ′′yy f ′′yz
f ′′zy f ′′zz

∣∣∣∣ (remove 1st row and

column); and one 3rd order principal minor: D3 =

∣∣∣∣∣∣
f ′′xx f ′′xy f ′′xz
f ′′yx f ′′yy f ′′yz
f ′′zx f ′′zy f ′′zz

∣∣∣∣∣∣.
A general rule for �nding whether a function f is convex or concave is:

1. f is convex if and only if all its principal minors are non-negative (≥ 0).

2. f is concave if and only if all its principal minors alternate signs as follows:

D1 ≤ 0, D2 ≥ 0, D3 ≤ 0, and so on

The table for convexity/concavity for functions of two variables is:

D1m D2m convexity/concavity de�niteness

≥ 0 ≥ 0 convex positive semide�nite
≤ 0 ≥ 0 concave negative semide�nite
something else neither neither
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Example. If you understand the formal de�nition of concavity/convexity, you might �nd yourself
quite happy upon seeing a problem like this on the exam (this one was taken from 25.03.2015 mock):

Let f(x) be a concave function de�ned on [0;∞) and f(0) = 0. Is it true that for k ≥ 1 the
following inequality holds: kf(x) ≥ f(kx)?

I strongly suggest you try to solve this problem yourself before reading the solution.

Solution. Recalling that concave means that

f(αx1 + (1− α)x2) ≥ αf(x1) + (1− α)f(x2)

We need to �gure out a way to turn this into kf(x) ≥ f(kx). The �rst thing to notice is that this
looks a lot like the de�nition, except for this pesky 1 − α term. Recalling that f(0) = 0 and setting
x2 = 0 (setting x2 < x1 is counterintuitive, but the de�nition doesn't actually say that x2 most be
greater than x1), we get the following:

f(αx1) ≥ αf(x1)

But in this formulation α(f(x1) is to the right of ≥, while in the problem formulation it's to the
left of ≥. Then we may notice that taking α = 1

k solves this problem:

kf(
x1
k

) ≥ f(x1)

Now it's pretty obvious that to get from this to kf(x) ≥ f(kx) we just need to take x1 = kx.

7.2 Appendix (don't read this unless you want to mess with your head)

You can think of every leading/principal leading minor as of cross-section of a function:

0.7x2 + xy + 0.7y2 0.5x2 + xy + 0.5y 0.3x2 + xy + 0.3y(
1.4 1
1 1.4

) (
1 1
1 1

) (
0.6 1
1 0.6

)
H1 > 0, H2 > 0 H1 > 0, H2 = 0 H1 > 0, H2 < 0
strictly convex convex neither

y axis −1.0−0.50.00.51.0
x axis

−1.0
−0.5

0.0
0.5

1.0

0.0

0.5

1.0

1.5

2.0

2.5

y axis −1.0−0.50.00.51.0
x axis

−1.0
−0.5

0.0
0.5

1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y axis −1.0−0.50.00.51.0
x axis

−1.0
−0.5

0.0
0.5

1.0

−0.5

0.0

0.5

1.0

1.5

2.0

7.3 What Does Determinant Have To Do With Anything? (don't read this even
more)

Suppose we have a 1 by 1 square, which we can get from vectors (1, 0) and (0, 1):

(1,0)

(0,1)
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This square can be written in a matrix form as(
1 0
0 1

)
where the �rst row denotes vector (1, 0) and second row denotes vector (0, 1). Area of the square

is 1 and determinant of this matrix is 1. Now let's add the �rst row of the matrix to the second row
and get the following rhombus: (

1 0
1 1

)

(1,0)

(1,1)

Area stayed the same and determinant stayed the same. Now let's add the second row to the �rst
row: (

2 1
1 1

)

(2,1)

(1,1)

And again, both area and determinant stayed the same. This should give you an intuitive under-
standing why determinant gives the area of the �gure9 and why determinant is 0, when vectors are
dependent. What else does this argument show is that however twisted the initial �gure is, we

can always reduce it to the �fundamental� form of the diagonal matrix10 (all �gure's angles
are 90 degree). The determinant will stay the same. �Fundamental� does not mean unique. This has
something to do with Hessian but I'm not sure what exactly. Sorry.

9Also, multiplication of a row multiplies area and determinant by a constant.
10Numbers on the diagonal are eigenvalues of the matrix.
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8 Unconstrained Optimization

8.1 Local Optima

Suppose we have a function y = f(x) and we want to �nd its minimum and maximum. How do we do
it? Start looking for stationary points, i.e. points where the function is �at i.e. y′ = 0.

De�nition. Point is called stationary (or critical), if all partial derivatives of the function are equal
to 0 at this point, i.e. ∇f = 0.

This was the �rst-order condition (since it's based on the �rst derivative) for the min or max, also
called necessary condition. Usually we just say �FOC �, though.

However, �nding such a point is not su�cient, since we don't know if it is a minimum, maximum,
or neither of these.

min max neither

To ascertain which point it is, we need to �nd the second derivative of a function. If the second
derivative is positive, then the �rst derivative (slope) is increasing, the function is speeding up, and,
looking at the picture above, we have the case of min. If the second derivative is negative, then the
slope is decreasing, the function is slowing down, and we have the case of max. If the second derivative
is zero, then this is an in�ection point.

y′ = 0, y′′ > 0⇒ speeding up ⇒min
y′ = 0, y′′ < 0⇒ slowing down ⇒max

This was the second-order condition (since it's based on the second derivative) for the min or max,
also called su�cient condition. Usually we just say �SOC �, though.

All of this sounds suspiciously similar to our discussion of convexity and concavity in the previous
chapter. And it is in fact the same discussion. Finding that the function attains a local minimum at
a point is exactly the same as �nding that a function is convex in this point's vicinity (look at the
picture above if it's not clear why!). Finding that the function attains a local maximum at a point is
exactly the same as �nding that a function is concave in this point's vicinity. If this is not clear, try
to imagine a di�erentiable function that would be convex around a point, where it attains maximum.

Therefore, the rule for convexity becomes the rule for local min and the rule for concavity becomes
the rule for local max, with the di�erence that all Hessian matrices are calculated at stationary

points:

H1 H2 H3 de�niteness min/max

> 0 > 0 > 0 positive de�nite local min
≥ 0 ≥ 0 ≥ 0 positive semide�nite inconclusive
< 0 > 0 < 0 negative de�nite local max
≤ 0 ≥ 0 ≤ 0 negative semide�nite inconclusive
something else inde�nite saddle point

Exam tip: If you get an inconclusive result, generally you don't need to look any further and can
just write �inconclusive� in answer.

You can check the pictures in section 7.2 on page 39 for geometric intuition regarding these rules.
The middle picture there: 0.5x2 + xy + 0.5y, sheds some light on the inconclusive case.

The reason we're only talking about local optima right now is that we're calculating Hessian
matrices at speci�c points and therefore cannot know what happens with the function on its whole
domain.
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Protip: Recall that the Young's Theorem says that if the function is ∈ C2 (twice continuously
di�erentiable), then f ′′xy = f ′′yx. Since functions given for such exercices almost always satisfy this
theorem, Hessian matrices are almost always symmetric.

8.2 Global Optima

If the function is either concave or convex, then its only critical point is its global maximum or
minimum, respectively. In all other cases, �nding global minima and maxima of a function is much
less straightforward, as there's no universal rule for this problem. There are two general ways to
proceed further:

1. Try to prove that there's no global min/max

2. Prove that a local extremum is also a global one.

Let's start with trying to prove there's no global min/max. The usual way to do this would be to show
that the function goes to in�nity in some direction. For example, let f(x, y) = 0.5x2 + xy + 0.5y2:

y axis

−1.0
−0.5

0.0
0.5

1.0

x axis

−1.0
−0.5

0.0
0.5

1.0

−0.5

0.0

0.5

1.0

1.5

2.0

So, suppose we want to prove that it has no global maximum. Let's try the direction x = y, so
f(x, y) = 0.5y2 + y2 + 0.5y2 = 2y2. Now check that lim

y→+∞
2y2 = +∞, so indeed this function has

no global maximum. In fact � picture makes it clear � for this function, we could check literally any
direction other than x = −y (purple line) and the result would stay the same. For example, let x = 0
(red line), then f(x, y) = 0.5y2 and lim

y→−∞
0.5y2 = +∞; or let y = x2! Then f(x, y) = 0.5x2+x3+0.5x4

and lim
x→+∞

0.5x2 + x3 + 0.5x4 = +∞;

Proving that a local extremum is also the global one is harder. There's basically three options:

1. The function is convex or kinda convex and everything works out

2. Transformation to polar coordinates works and everything's easy as well (just �nd lim of a
function as r →∞ to prove that the local limit is a global one)

3. The two above don't work and you're fuc..uh... you have to come up with something on the spot.
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9 Constrained Optimization

Note: You can skip this explanation of the lagrangian if you wish and move right to the method
itself.

De�nition of the economic good is that it's something that is both scarce and desirable. It's pretty
obvious that the lack of constraints when optimizing, does not go hand-in-hand with the scarcity
condition. Almost all optimization problems encountered in real life do have some constraints placed
on them.

Here, I'll use a utility maximization problem faced by a consumer as an example. The constraint
is their income I = 5. Available goods are x and y. Utility function U(x, y) = x · y. For simplicity,
we'll assume price of both goods to be equal to 1, so the generic income constraint Px · x+ Py · y = I
transforms into x+ y = 5 Formally, the task is:U(x, y) = x · y → max

x,y

x+ y = 5

There are several ways to solve this problem.
The most obvious one is to express y = 5−x and substitute this into the original equation, making

the problem

x · (5− x) = 5x− x2 → max
x

Then we set derivative to 0

5− 2x = 0
x = 2.5

We know that 5x − x2 is a parabola with branches downwards, which means that x = 2.5 is its
maximum. Pretty simple.

In microeconomics we would probably use graphs to solve it. So let's draw the indi�erence curves
(which are called level curves in our course; check section 4.1 on page 17) and income constraint:

The solution x = 2.5 is immediately obvious. The important thing to notice here is that the income
constaint is tangent to the optimal level-curve. As we can see, any level-curve that crosses the income
constraint, but is not tangent to it, is not optimal.

Now let's change the income constraint x+y = 5 to the general form of g(x, y) = x+y. Again, from
the picture above, we can see that the level-curves of f and g are tangent. Recall that the gradient's
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third property says that it is orthogonal to the level-curve. Since f and g share the level-curve at a
point, their gradients are orthogonal to the same line, and they must be codirected.

The fact that ∇f and ∇g are codirected means that they are coe�cients of each other and we can
get one from the other by multiplying it by some number. Usually λ is used here:

∇f = λ∇g ⇐⇒

{
f ′x = λg′x
f ′y = λg′y

By including the original income constraint g(x, y) = c, we get three equations with three unknowns
and the problem becomes: 

f ′x = λg′x
f ′y = λg′y
g(x, y) = c

Solving this system of equations will get us �rst-order conditions. This approach might seem
somewhat unwieldy, especially when we can just subsitute y = 5 − x, but when constraints become
more complex, e.g. y2 + x2 = 1, it's the most convenient way to solve an optimization problem.

The way to remember those three equations is to introduce the Lagrangian function:

L(x, y, λ) = f(x, y) + λ (c− g(x, y))

By taking its partial derivatives L′x, L
′
y, and L′λ and equating them to zero we get exactly the

original system: 
L′x = 0

L′y = 0

L′λ = 0

⇒


f ′x − λg′x = 0

f ′y − λg′y = 0

c− g(x, y) = 0

Weierstrass Theorem. Function continuous on a compact (closed and bounded) set attains its
minimum and maximum.

I suggest you check back on the discussion of the signi�cance of this theorem in section 3.2 on
page 12.

9.1 What the hell is NDCQ?

�Always check NDCQ� your seminar teacher tells you. What the hell does that even mean? Well its
actual formulation is:

If ∃ (x, y) :

{
∇g (x, y) = (0, 0)

g (x, y) = c
, then remember (x∗, y∗) as a candidate for extremum. If @, then

NDCQ holds.
Basically it says that when the gradient of the constraint is equal to 0, while satisfying the con-

straint, then the Lagrangian won't detect this point while looking for extremum (since we can't solve
∇f = λ∇g). This means that we need to check this point separately later.

Example 1. Suppose the constraint x2 + 3y2 = 4. Then its gradient is (2x, 6y). 2x = 0 → x = 0,
6y = 0→ y = 0. Since 02 + 3 · 02 = 0 6= 4, NDCQ is satis�ed.

Example 2. Suppose the constraint is x2 + 3y2 = 0. Then its gradient is (2x, 6y). 2x = 0 → x =
0, 6y = 0→ y = 0. Since 02 + 3 · 02 = 0, NDCQ is violated. Then we'll need to calculate the value of
the function at a point (0, 0) later and check if it is an extremum.
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9.2 Lagrange multiplier method

Steps (solution of an example is below):

1. Check NDCQ (non-degenerate constraint quali�cation).

If ∃ (x∗, y∗) :

{
∇g (x∗, y∗) = (0, 0)

g (x, y) = c
, then remember (x∗, y∗) as a candidate for extremum. If @, then

NDCQ holds.

2. Introduce Lagrangian function.

L(x, y, λ) = f(x, y) + λ (c− g(x, y))
Check FOC (necessary condition):

L′x = 0

L′y = 0

L′λ = 0

⇒


f ′x − λg′x = 0

f ′y − λg′y = 0

c− g(x, y) = 0

Find critical points (x∗, y∗, λ∗)

3. Check SOC (su�cient condition).

Bordered Hessian in our case is:

H̄ =

 0 g′x g′y
g′x L′′xx L′′xy
g′y L′′yx L′′yy


Note that L′′xy = L′′yx, so you only need to calculate one of them. In our case, n = 2, m = 1, so if

H̄ > 0, then (x∗, y∗, λ∗) is maximum. If H̄ < 0, then (x∗, y∗, λ∗) is minumum.

9.2.1 Bordered Hessian

Exam tip: If you can only memorize one thing from the entire course for the exam, memorize this!!
Let n be the number of variables and m be the number of constraints. The general rule for the

Bordered Hessian when �nding max is:

1. Calculate the determinant of the Hessian (recall that the Hessian is the last principal leading
minor)

2. If its sign is (−1)n, then start to calculate the determinants of the previous principal leading mi-
nors i.e. remove rightmost column and the bottom row one by one. The signs must alternate.

3. Calculate the determinants of the last n−m leading principal minors or until the pattern breaks
down (so you know this is not max).

The general rule for the Bordered Hessian when �nding min is:

1. Calculate the determinant of the Hessian (recall that the Hessian is the last principal leading
minor)

2. If its sign is (−1)m, then start to calculate the determinants of the previous principal leading
minors i.e. remove rightmost column and the bottom row one by one. The signs must all

equal to (−1)m.

3. Calculate the determinants of the last n−m leading principal minors or until the pattern breaks
down (so you know this is not min).
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The rule when signs must alternate and when they stay the same is hopefully familiar to you from the
discussion of unconstrained optimization. If it's not, you can use mnemonics to remember it (remember
the cave?) The metaphor that came to my mind is that in order to stay at the top (max) you always
need to �ght di�erent enemies (so need alternate strategies and stu�); and when you're just trying to
hold on (min) you're digging into the trenches and just do one thing (signs stay the same). If this
didn't help, try come up with your own mnemonic! Anyway, here's another one: Note that n is always
bigger than m. So when we are �nding max (big number) we care about (−1)n and when we are
�nding min (small number) we care about (−1)m.

Examples. There are great examples and a deeper explanation of the Lagrange Multipliers method in
the OptimizationHOWTO by A.Kalchenko. (if the link doesn't work, go to Mathematics for Economists
page in icef-info and scroll to the bottom of the page). It should also help if you found my explanation
of the Lagrangian and/or Bordered Hessian convoluted and unintelligible.

9.3 Envelope theorem (unconstrained)

Imagine yourself several of years from now: a successful ICEF graduate, you are in a very competitive
business of growing marijuana. You learned well from the microeconomics courses that the only way
to survive in competitive markets is to minimize Average Total Cost. Your ATC is a�ected by the
economies of scale, which increase your production e�ciency, and by the fact that if you, um, produce
too much of the good, law enforcement agencies will spend much more resources trying to bust you,
thus increasing your costs. This model suggests the following quadratic function, which you need to
minimize:

ATC = y(x) = x2 − 6x+ 14→ min
x

y′ = 2x− 6 = 0
x = 3, y = 5

economies of scale e�ect negative outside e�ect

So you �nd that the optimal production is 3 units of your top-notch product. However, the police
has suddenly become much more active, which a�ects the coe�cient a, changing your ATC function
to

y(x) = x2 − 4x+ 14→ min
x

y′ = 2x− 4 = 0
x = 2, y = 10

As expected, the optimal quantity has fallen from 3 to 2, whileATC has risen from 5 to 10. However,
instead of calculating the optimal production every time the activity level of the police changes, we
could solve the equation once for arbitragy a: y(x, a) = x2 − ax + 14 and then just substitute the
appropriate a into the solution to �nd the answer. To see how it works, let's do this procedure:

46

http://icef-info.hse.ru/goto_icef_file_12332_download.html


y(x, a) = x2 − ax+ 14→ min
x

y′ = 2x− a = 0

x = a
2 , y = −a2

4 + 14

Substituting a = 4 we get x = 2, y = 10, exactly as before.
The �nal expression for ATC is y(x, a) = −a2

4 + 14. It tells us the optimal value of our function,
depending on some parameter a, and it is called the value function, usually denoted V (a). In our case

V (a) = −a2

4 + 14.
Note that to �nd the e�ect of a marginal change in police activity on ATC we would need to take

the derivative of y(x, a) = x2 − ax+ 14 by a:

y′a(x, a) = −x
And since the optimal x = a

2 , substituting it,

y′a(x, a) = −a
2

On the other hand, we could �nd the e�ect of a marginal change in police activity on ATC by
taking the derivative of V (a) = −a2

4 + 14 directly, as it shows ATC for all a:

V ′(a) = −a
2

What we just saw is exactly the statemetent of the Envelope theorem. Mathematically, it is stated
as

Theorem 1 (unconstrained optimization). Let f(x, a) ∈ C1 and f(x, a)→ max
x

= f(x∗(a), a) =

V (a) i.e. we rename the result of the maximization as V (a). Then V ′(a) = df(x∗(a),a)
da = ∂f(x,a)

∂a

∣∣∣
x∗(a)

9.4 Envelope theorem (constrained)

Most often the Envelope theorem is used in the constrained case, e.g. with the Lagrangian. In this case
the mathematical formulation gets very clunky but the result is that L = f(x, y) + λg(x, , y) becomes
V (a). This means that all you need to do is to take the Lagrangian derivative with respect to the
parameter, at the optimal point you have found. The intuition behind this is that L kinda incorporates
f(x) and g(x) together, which means that we can work (i.e. take derivative) with it directly.

Example. (taken from 24.12.2014 exam)
It is known that the point (1, 0) is the constrained local maximum of the function f(x, y) =

5x− ky − 3x2 + 2xy − 5y2 subject to x+ y = 1.
(a) Find the value of k and the maximum value of the function f
(b) Using Envelope theorem �nd the new value of maximum if k will increase by 0.1

Solution.

(a) First, set up the Lagrangian

L = 5x− ky − 3x2 + 2xy − 5y2 + λ(1− x− y)

Then solve it and �nd k 
L′x = 5− 6x+ 2y − λ = 0 (1)

L′y = −k + 2x− 10y − λ = 0 (2)

L′λ = 1− x− y = 0⇒ y = 1− x (3)

5− 6 + 2− 2− λ = 0 (1)
λ = −1 (1)

−k + 2 + 1 = 0 (2)
k = 3 (2)
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So f(x, y) = 2 at x = 1, y = 0 and k = 3
(b)

df = L′kdk = −0.1y = 0
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